LCOV - code coverage report
Current view: top level - usr/include/irrlicht - vector2d.h (source / functions) Hit Total Coverage
Test: report Lines: 36 41 87.8 %
Date: 2015-07-11 18:23:49 Functions: 42 57 73.7 %

          Line data    Source code
       1             : // Copyright (C) 2002-2012 Nikolaus Gebhardt
       2             : // This file is part of the "Irrlicht Engine".
       3             : // For conditions of distribution and use, see copyright notice in irrlicht.h
       4             : 
       5             : #ifndef __IRR_POINT_2D_H_INCLUDED__
       6             : #define __IRR_POINT_2D_H_INCLUDED__
       7             : 
       8             : #include "irrMath.h"
       9             : #include "dimension2d.h"
      10             : 
      11             : namespace irr
      12             : {
      13             : namespace core
      14             : {
      15             : 
      16             : 
      17             : //! 2d vector template class with lots of operators and methods.
      18             : /** As of Irrlicht 1.6, this class supercedes position2d, which should
      19             :         be considered deprecated. */
      20             : template <class T>
      21             : class vector2d
      22             : {
      23             : public:
      24             :         //! Default constructor (null vector)
      25     4693828 :         vector2d() : X(0), Y(0) {}
      26             :         //! Constructor with two different values
      27    11303461 :         vector2d(T nx, T ny) : X(nx), Y(ny) {}
      28             :         //! Constructor with the same value for both members
      29             :         explicit vector2d(T n) : X(n), Y(n) {}
      30             :         //! Copy constructor
      31    65932930 :         vector2d(const vector2d<T>& other) : X(other.X), Y(other.Y) {}
      32             : 
      33       16036 :         vector2d(const dimension2d<T>& other) : X(other.Width), Y(other.Height) {}
      34             : 
      35             :         // operators
      36             : 
      37        1331 :         vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
      38             : 
      39     3817194 :         vector2d<T>& operator=(const vector2d<T>& other) { X = other.X; Y = other.Y; return *this; }
      40             : 
      41             :         vector2d<T>& operator=(const dimension2d<T>& other) { X = other.Width; Y = other.Height; return *this; }
      42             : 
      43      257392 :         vector2d<T> operator+(const vector2d<T>& other) const { return vector2d<T>(X + other.X, Y + other.Y); }
      44             :         vector2d<T> operator+(const dimension2d<T>& other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
      45      121842 :         vector2d<T>& operator+=(const vector2d<T>& other) { X+=other.X; Y+=other.Y; return *this; }
      46         150 :         vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
      47             :         vector2d<T>& operator+=(const T v) { X+=v; Y+=v; return *this; }
      48             :         vector2d<T>& operator+=(const dimension2d<T>& other) { X += other.Width; Y += other.Height; return *this;  }
      49             : 
      50        7312 :         vector2d<T> operator-(const vector2d<T>& other) const { return vector2d<T>(X - other.X, Y - other.Y); }
      51             :         vector2d<T> operator-(const dimension2d<T>& other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
      52           0 :         vector2d<T>& operator-=(const vector2d<T>& other) { X-=other.X; Y-=other.Y; return *this; }
      53          75 :         vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
      54           0 :         vector2d<T>& operator-=(const T v) { X-=v; Y-=v; return *this; }
      55             :         vector2d<T>& operator-=(const dimension2d<T>& other) { X -= other.Width; Y -= other.Height; return *this;  }
      56             : 
      57             :         vector2d<T> operator*(const vector2d<T>& other) const { return vector2d<T>(X * other.X, Y * other.Y); }
      58             :         vector2d<T>& operator*=(const vector2d<T>& other) { X*=other.X; Y*=other.Y; return *this; }
      59      254888 :         vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
      60             :         vector2d<T>& operator*=(const T v) { X*=v; Y*=v; return *this; }
      61             : 
      62             :         vector2d<T> operator/(const vector2d<T>& other) const { return vector2d<T>(X / other.X, Y / other.Y); }
      63             :         vector2d<T>& operator/=(const vector2d<T>& other) { X/=other.X; Y/=other.Y; return *this; }
      64         300 :         vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
      65             :         vector2d<T>& operator/=(const T v) { X/=v; Y/=v; return *this; }
      66             : 
      67             :         //! sort in order X, Y. Equality with rounding tolerance.
      68             :         bool operator<=(const vector2d<T>&other) const
      69             :         {
      70             :                 return  (X<other.X || core::equals(X, other.X)) ||
      71             :                                 (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y)));
      72             :         }
      73             : 
      74             :         //! sort in order X, Y. Equality with rounding tolerance.
      75             :         bool operator>=(const vector2d<T>&other) const
      76             :         {
      77             :                 return  (X>other.X || core::equals(X, other.X)) ||
      78             :                                 (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y)));
      79             :         }
      80             : 
      81             :         //! sort in order X, Y. Difference must be above rounding tolerance.
      82     4089583 :         bool operator<(const vector2d<T>&other) const
      83             :         {
      84     5339602 :                 return  (X<other.X && !core::equals(X, other.X)) ||
      85     5339602 :                                 (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y));
      86             :         }
      87             : 
      88             :         //! sort in order X, Y. Difference must be above rounding tolerance.
      89             :         bool operator>(const vector2d<T>&other) const
      90             :         {
      91             :                 return  (X>other.X && !core::equals(X, other.X)) ||
      92             :                                 (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y));
      93             :         }
      94             : 
      95     2346744 :         bool operator==(const vector2d<T>& other) const { return equals(other); }
      96        2444 :         bool operator!=(const vector2d<T>& other) const { return !equals(other); }
      97             : 
      98             :         // functions
      99             : 
     100             :         //! Checks if this vector equals the other one.
     101             :         /** Takes floating point rounding errors into account.
     102             :         \param other Vector to compare with.
     103             :         \return True if the two vector are (almost) equal, else false. */
     104     2349188 :         bool equals(const vector2d<T>& other) const
     105             :         {
     106     2349188 :                 return core::equals(X, other.X) && core::equals(Y, other.Y);
     107             :         }
     108             : 
     109       89763 :         vector2d<T>& set(T nx, T ny) {X=nx; Y=ny; return *this; }
     110             :         vector2d<T>& set(const vector2d<T>& p) { X=p.X; Y=p.Y; return *this; }
     111             : 
     112             :         //! Gets the length of the vector.
     113             :         /** \return The length of the vector. */
     114       33732 :         T getLength() const { return core::squareroot( X*X + Y*Y ); }
     115             : 
     116             :         //! Get the squared length of this vector
     117             :         /** This is useful because it is much faster than getLength().
     118             :         \return The squared length of the vector. */
     119           0 :         T getLengthSQ() const { return X*X + Y*Y; }
     120             : 
     121             :         //! Get the dot product of this vector with another.
     122             :         /** \param other Other vector to take dot product with.
     123             :         \return The dot product of the two vectors. */
     124             :         T dotProduct(const vector2d<T>& other) const
     125             :         {
     126             :                 return X*other.X + Y*other.Y;
     127             :         }
     128             : 
     129             :         //! Gets distance from another point.
     130             :         /** Here, the vector is interpreted as a point in 2-dimensional space.
     131             :         \param other Other vector to measure from.
     132             :         \return Distance from other point. */
     133       33732 :         T getDistanceFrom(const vector2d<T>& other) const
     134             :         {
     135       33732 :                 return vector2d<T>(X - other.X, Y - other.Y).getLength();
     136             :         }
     137             : 
     138             :         //! Returns squared distance from another point.
     139             :         /** Here, the vector is interpreted as a point in 2-dimensional space.
     140             :         \param other Other vector to measure from.
     141             :         \return Squared distance from other point. */
     142           0 :         T getDistanceFromSQ(const vector2d<T>& other) const
     143             :         {
     144           0 :                 return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
     145             :         }
     146             : 
     147             :         //! rotates the point anticlockwise around a center by an amount of degrees.
     148             :         /** \param degrees Amount of degrees to rotate by, anticlockwise.
     149             :         \param center Rotation center.
     150             :         \return This vector after transformation. */
     151       89763 :         vector2d<T>& rotateBy(f64 degrees, const vector2d<T>& center=vector2d<T>())
     152             :         {
     153       89763 :                 degrees *= DEGTORAD64;
     154       89763 :                 const f64 cs = cos(degrees);
     155       89763 :                 const f64 sn = sin(degrees);
     156             : 
     157       89763 :                 X -= center.X;
     158       89763 :                 Y -= center.Y;
     159             : 
     160       89763 :                 set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs));
     161             : 
     162       89763 :                 X += center.X;
     163       89763 :                 Y += center.Y;
     164       89763 :                 return *this;
     165             :         }
     166             : 
     167             :         //! Normalize the vector.
     168             :         /** The null vector is left untouched.
     169             :         \return Reference to this vector, after normalization. */
     170             :         vector2d<T>& normalize()
     171             :         {
     172             :                 f32 length = (f32)(X*X + Y*Y);
     173             :                 if ( length == 0 )
     174             :                         return *this;
     175             :                 length = core::reciprocal_squareroot ( length );
     176             :                 X = (T)(X * length);
     177             :                 Y = (T)(Y * length);
     178             :                 return *this;
     179             :         }
     180             : 
     181             :         //! Calculates the angle of this vector in degrees in the trigonometric sense.
     182             :         /** 0 is to the right (3 o'clock), values increase counter-clockwise.
     183             :         This method has been suggested by Pr3t3nd3r.
     184             :         \return Returns a value between 0 and 360. */
     185             :         f64 getAngleTrig() const
     186             :         {
     187             :                 if (Y == 0)
     188             :                         return X < 0 ? 180 : 0;
     189             :                 else
     190             :                 if (X == 0)
     191             :                         return Y < 0 ? 270 : 90;
     192             : 
     193             :                 if ( Y > 0)
     194             :                         if (X > 0)
     195             :                                 return atan((irr::f64)Y/(irr::f64)X) * RADTODEG64;
     196             :                         else
     197             :                                 return 180.0-atan((irr::f64)Y/-(irr::f64)X) * RADTODEG64;
     198             :                 else
     199             :                         if (X > 0)
     200             :                                 return 360.0-atan(-(irr::f64)Y/(irr::f64)X) * RADTODEG64;
     201             :                         else
     202             :                                 return 180.0+atan(-(irr::f64)Y/-(irr::f64)X) * RADTODEG64;
     203             :         }
     204             : 
     205             :         //! Calculates the angle of this vector in degrees in the counter trigonometric sense.
     206             :         /** 0 is to the right (3 o'clock), values increase clockwise.
     207             :         \return Returns a value between 0 and 360. */
     208             :         inline f64 getAngle() const
     209             :         {
     210             :                 if (Y == 0) // corrected thanks to a suggestion by Jox
     211             :                         return X < 0 ? 180 : 0;
     212             :                 else if (X == 0)
     213             :                         return Y < 0 ? 90 : 270;
     214             : 
     215             :                 // don't use getLength here to avoid precision loss with s32 vectors
     216             :                 // avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp
     217             :                 const f64 tmp = core::clamp(Y / sqrt((f64)(X*X + Y*Y)), -1.0, 1.0);
     218             :                 const f64 angle = atan( core::squareroot(1 - tmp*tmp) / tmp) * RADTODEG64;
     219             : 
     220             :                 if (X>0 && Y>0)
     221             :                         return angle + 270;
     222             :                 else
     223             :                 if (X>0 && Y<0)
     224             :                         return angle + 90;
     225             :                 else
     226             :                 if (X<0 && Y<0)
     227             :                         return 90 - angle;
     228             :                 else
     229             :                 if (X<0 && Y>0)
     230             :                         return 270 - angle;
     231             : 
     232             :                 return angle;
     233             :         }
     234             : 
     235             :         //! Calculates the angle between this vector and another one in degree.
     236             :         /** \param b Other vector to test with.
     237             :         \return Returns a value between 0 and 90. */
     238             :         inline f64 getAngleWith(const vector2d<T>& b) const
     239             :         {
     240             :                 f64 tmp = (f64)(X*b.X + Y*b.Y);
     241             : 
     242             :                 if (tmp == 0.0)
     243             :                         return 90.0;
     244             : 
     245             :                 tmp = tmp / core::squareroot((f64)((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y)));
     246             :                 if (tmp < 0.0)
     247             :                         tmp = -tmp;
     248             :                 if ( tmp > 1.0 ) //   avoid floating-point trouble
     249             :                         tmp = 1.0;
     250             : 
     251             :                 return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
     252             :         }
     253             : 
     254             :         //! Returns if this vector interpreted as a point is on a line between two other points.
     255             :         /** It is assumed that the point is on the line.
     256             :         \param begin Beginning vector to compare between.
     257             :         \param end Ending vector to compare between.
     258             :         \return True if this vector is between begin and end, false if not. */
     259             :         bool isBetweenPoints(const vector2d<T>& begin, const vector2d<T>& end) const
     260             :         {
     261             :                 if (begin.X != end.X)
     262             :                 {
     263             :                         return ((begin.X <= X && X <= end.X) ||
     264             :                                 (begin.X >= X && X >= end.X));
     265             :                 }
     266             :                 else
     267             :                 {
     268             :                         return ((begin.Y <= Y && Y <= end.Y) ||
     269             :                                 (begin.Y >= Y && Y >= end.Y));
     270             :                 }
     271             :         }
     272             : 
     273             :         //! Creates an interpolated vector between this vector and another vector.
     274             :         /** \param other The other vector to interpolate with.
     275             :         \param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
     276             :         Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
     277             :         \return An interpolated vector.  This vector is not modified. */
     278             :         vector2d<T> getInterpolated(const vector2d<T>& other, f64 d) const
     279             :         {
     280             :                 f64 inv = 1.0f - d;
     281             :                 return vector2d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d));
     282             :         }
     283             : 
     284             :         //! Creates a quadratically interpolated vector between this and two other vectors.
     285             :         /** \param v2 Second vector to interpolate with.
     286             :         \param v3 Third vector to interpolate with (maximum at 1.0f)
     287             :         \param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
     288             :         Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
     289             :         \return An interpolated vector. This vector is not modified. */
     290             :         vector2d<T> getInterpolated_quadratic(const vector2d<T>& v2, const vector2d<T>& v3, f64 d) const
     291             :         {
     292             :                 // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
     293             :                 const f64 inv = 1.0f - d;
     294             :                 const f64 mul0 = inv * inv;
     295             :                 const f64 mul1 = 2.0f * d * inv;
     296             :                 const f64 mul2 = d * d;
     297             : 
     298             :                 return vector2d<T> ( (T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
     299             :                                         (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
     300             :         }
     301             : 
     302             :         //! Sets this vector to the linearly interpolated vector between a and b.
     303             :         /** \param a first vector to interpolate with, maximum at 1.0f
     304             :         \param b second vector to interpolate with, maximum at 0.0f
     305             :         \param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
     306             :         Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
     307             :         */
     308             :         vector2d<T>& interpolate(const vector2d<T>& a, const vector2d<T>& b, f64 d)
     309             :         {
     310             :                 X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
     311             :                 Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
     312             :                 return *this;
     313             :         }
     314             : 
     315             :         //! X coordinate of vector.
     316             :         T X;
     317             : 
     318             :         //! Y coordinate of vector.
     319             :         T Y;
     320             : };
     321             : 
     322             :         //! Typedef for f32 2d vector.
     323             :         typedef vector2d<f32> vector2df;
     324             : 
     325             :         //! Typedef for integer 2d vector.
     326             :         typedef vector2d<s32> vector2di;
     327             : 
     328             :         template<class S, class T>
     329        1331 :         vector2d<T> operator*(const S scalar, const vector2d<T>& vector) { return vector*scalar; }
     330             : 
     331             :         // These methods are declared in dimension2d, but need definitions of vector2d
     332             :         template<class T>
     333         546 :         dimension2d<T>::dimension2d(const vector2d<T>& other) : Width(other.X), Height(other.Y) { }
     334             : 
     335             :         template<class T>
     336             :         bool dimension2d<T>::operator==(const vector2d<T>& other) const { return Width == other.X && Height == other.Y; }
     337             : 
     338             : } // end namespace core
     339             : } // end namespace irr
     340             : 
     341             : #endif
     342             : 

Generated by: LCOV version 1.11