LCOV - code coverage report
Current view: top level - usr/include/irrlicht - vector3d.h (source / functions) Hit Total Coverage
Test: report Lines: 73 80 91.2 %
Date: 2015-07-11 18:23:49 Functions: 46 61 75.4 %

          Line data    Source code
       1             : // Copyright (C) 2002-2012 Nikolaus Gebhardt
       2             : // This file is part of the "Irrlicht Engine".
       3             : // For conditions of distribution and use, see copyright notice in irrlicht.h
       4             : 
       5             : #ifndef __IRR_POINT_3D_H_INCLUDED__
       6             : #define __IRR_POINT_3D_H_INCLUDED__
       7             : 
       8             : #include "irrMath.h"
       9             : 
      10             : namespace irr
      11             : {
      12             : namespace core
      13             : {
      14             : 
      15             :         //! 3d vector template class with lots of operators and methods.
      16             :         /** The vector3d class is used in Irrlicht for three main purposes:
      17             :                 1) As a direction vector (most of the methods assume this).
      18             :                 2) As a position in 3d space (which is synonymous with a direction vector from the origin to this position).
      19             :                 3) To hold three Euler rotations, where X is pitch, Y is yaw and Z is roll.
      20             :         */
      21             :         template <class T>
      22             :         class vector3d
      23             :         {
      24             :         public:
      25             :                 //! Default constructor (null vector).
      26   131911956 :                 vector3d() : X(0), Y(0), Z(0) {}
      27             :                 //! Constructor with three different values
      28   721271007 :                 vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
      29             :                 //! Constructor with the same value for all elements
      30           0 :                 explicit vector3d(T n) : X(n), Y(n), Z(n) {}
      31             :                 //! Copy constructor
      32   527713061 :                 vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
      33             : 
      34             :                 // operators
      35             : 
      36      635020 :                 vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
      37             : 
      38   124328128 :                 vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
      39             : 
      40   272974542 :                 vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
      41    15974524 :                 vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
      42           0 :                 vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
      43             :                 vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }
      44             : 
      45   188304500 :                 vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
      46      819211 :                 vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
      47           0 :                 vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
      48             :                 vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }
      49             : 
      50             :                 vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
      51      346300 :                 vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
      52    34154412 :                 vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
      53      246098 :                 vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
      54             : 
      55             :                 vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
      56             :                 vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
      57     3510829 :                 vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
      58           0 :                 vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
      59             : 
      60             :                 //! sort in order X, Y, Z. Equality with rounding tolerance.
      61             :                 bool operator<=(const vector3d<T>&other) const
      62             :                 {
      63             :                         return  (X<other.X || core::equals(X, other.X)) ||
      64             :                                         (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y))) ||
      65             :                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z<other.Z || core::equals(Z, other.Z)));
      66             :                 }
      67             : 
      68             :                 //! sort in order X, Y, Z. Equality with rounding tolerance.
      69             :                 bool operator>=(const vector3d<T>&other) const
      70             :                 {
      71             :                         return  (X>other.X || core::equals(X, other.X)) ||
      72             :                                         (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))) ||
      73             :                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z>other.Z || core::equals(Z, other.Z)));
      74             :                 }
      75             : 
      76             :                 //! sort in order X, Y, Z. Difference must be above rounding tolerance.
      77    11189529 :                 bool operator<(const vector3d<T>&other) const
      78             :                 {
      79    15040871 :                         return  (X<other.X && !core::equals(X, other.X)) ||
      80    16697895 :                                         (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y)) ||
      81    31731704 :                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && Z<other.Z && !core::equals(Z, other.Z));
      82             :                 }
      83             : 
      84             :                 //! sort in order X, Y, Z. Difference must be above rounding tolerance.
      85             :                 bool operator>(const vector3d<T>&other) const
      86             :                 {
      87             :                         return  (X>other.X && !core::equals(X, other.X)) ||
      88             :                                         (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)) ||
      89             :                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && Z>other.Z && !core::equals(Z, other.Z));
      90             :                 }
      91             : 
      92             :                 //! use weak float compare
      93    68074320 :                 bool operator==(const vector3d<T>& other) const
      94             :                 {
      95    68074320 :                         return this->equals(other);
      96             :                 }
      97             : 
      98      447027 :                 bool operator!=(const vector3d<T>& other) const
      99             :                 {
     100      447027 :                         return !this->equals(other);
     101             :                 }
     102             : 
     103             :                 // functions
     104             : 
     105             :                 //! returns if this vector equals the other one, taking floating point rounding errors into account
     106    68518543 :                 bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
     107             :                 {
     108    68518543 :                         return core::equals(X, other.X, tolerance) &&
     109    12713063 :                                 core::equals(Y, other.Y, tolerance) &&
     110    81229806 :                                 core::equals(Z, other.Z, tolerance);
     111             :                 }
     112             : 
     113    18936380 :                 vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
     114             :                 vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}
     115             : 
     116             :                 //! Get length of the vector.
     117     3178973 :                 T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }
     118             : 
     119             :                 //! Get squared length of the vector.
     120             :                 /** This is useful because it is much faster than getLength().
     121             :                 \return Squared length of the vector. */
     122             :                 T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
     123             : 
     124             :                 //! Get the dot product with another vector.
     125      281948 :                 T dotProduct(const vector3d<T>& other) const
     126             :                 {
     127      281948 :                         return X*other.X + Y*other.Y + Z*other.Z;
     128             :                 }
     129             : 
     130             :                 //! Get distance from another point.
     131             :                 /** Here, the vector is interpreted as point in 3 dimensional space. */
     132     1246232 :                 T getDistanceFrom(const vector3d<T>& other) const
     133             :                 {
     134     1246232 :                         return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
     135             :                 }
     136             : 
     137             :                 //! Returns squared distance from another point.
     138             :                 /** Here, the vector is interpreted as point in 3 dimensional space. */
     139             :                 T getDistanceFromSQ(const vector3d<T>& other) const
     140             :                 {
     141             :                         return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
     142             :                 }
     143             : 
     144             :                 //! Calculates the cross product with another vector.
     145             :                 /** \param p Vector to multiply with.
     146             :                 \return Crossproduct of this vector with p. */
     147       53482 :                 vector3d<T> crossProduct(const vector3d<T>& p) const
     148             :                 {
     149       53482 :                         return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
     150             :                 }
     151             : 
     152             :                 //! Returns if this vector interpreted as a point is on a line between two other points.
     153             :                 /** It is assumed that the point is on the line.
     154             :                 \param begin Beginning vector to compare between.
     155             :                 \param end Ending vector to compare between.
     156             :                 \return True if this vector is between begin and end, false if not. */
     157             :                 bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
     158             :                 {
     159             :                         const T f = (end - begin).getLengthSQ();
     160             :                         return getDistanceFromSQ(begin) <= f &&
     161             :                                 getDistanceFromSQ(end) <= f;
     162             :                 }
     163             : 
     164             :                 //! Normalizes the vector.
     165             :                 /** In case of the 0 vector the result is still 0, otherwise
     166             :                 the length of the vector will be 1.
     167             :                 \return Reference to this vector after normalization. */
     168     8890076 :                 vector3d<T>& normalize()
     169             :                 {
     170     8890076 :                         f64 length = X*X + Y*Y + Z*Z;
     171     8890076 :                         if (length == 0 ) // this check isn't an optimization but prevents getting NAN in the sqrt.
     172       23785 :                                 return *this;
     173     8866291 :                         length = core::reciprocal_squareroot(length);
     174             : 
     175     8866291 :                         X = (T)(X * length);
     176     8866291 :                         Y = (T)(Y * length);
     177     8866291 :                         Z = (T)(Z * length);
     178     8866291 :                         return *this;
     179             :                 }
     180             : 
     181             :                 //! Sets the length of the vector to a new value
     182           0 :                 vector3d<T>& setLength(T newlength)
     183             :                 {
     184           0 :                         normalize();
     185           0 :                         return (*this *= newlength);
     186             :                 }
     187             : 
     188             :                 //! Inverts the vector.
     189             :                 vector3d<T>& invert()
     190             :                 {
     191             :                         X *= -1;
     192             :                         Y *= -1;
     193             :                         Z *= -1;
     194             :                         return *this;
     195             :                 }
     196             : 
     197             :                 //! Rotates the vector by a specified number of degrees around the Y axis and the specified center.
     198             :                 /** \param degrees Number of degrees to rotate around the Y axis.
     199             :                 \param center The center of the rotation. */
     200     2396897 :                 void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
     201             :                 {
     202     2396897 :                         degrees *= DEGTORAD64;
     203     2396897 :                         f64 cs = cos(degrees);
     204     2396897 :                         f64 sn = sin(degrees);
     205     2396897 :                         X -= center.X;
     206     2396897 :                         Z -= center.Z;
     207     2396897 :                         set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
     208     2396901 :                         X += center.X;
     209     2396901 :                         Z += center.Z;
     210     2396901 :                 }
     211             : 
     212             :                 //! Rotates the vector by a specified number of degrees around the Z axis and the specified center.
     213             :                 /** \param degrees: Number of degrees to rotate around the Z axis.
     214             :                 \param center: The center of the rotation. */
     215     5561726 :                 void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
     216             :                 {
     217     5561726 :                         degrees *= DEGTORAD64;
     218     5561726 :                         f64 cs = cos(degrees);
     219     5561726 :                         f64 sn = sin(degrees);
     220     5561726 :                         X -= center.X;
     221     5561726 :                         Y -= center.Y;
     222     5561726 :                         set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
     223     5561726 :                         X += center.X;
     224     5561726 :                         Y += center.Y;
     225     5561726 :                 }
     226             : 
     227             :                 //! Rotates the vector by a specified number of degrees around the X axis and the specified center.
     228             :                 /** \param degrees: Number of degrees to rotate around the X axis.
     229             :                 \param center: The center of the rotation. */
     230     4312704 :                 void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
     231             :                 {
     232     4312704 :                         degrees *= DEGTORAD64;
     233     4312704 :                         f64 cs = cos(degrees);
     234     4312704 :                         f64 sn = sin(degrees);
     235     4312704 :                         Z -= center.Z;
     236     4312704 :                         Y -= center.Y;
     237     4312704 :                         set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
     238     4312704 :                         Z += center.Z;
     239     4312704 :                         Y += center.Y;
     240     4312704 :                 }
     241             : 
     242             :                 //! Creates an interpolated vector between this vector and another vector.
     243             :                 /** \param other The other vector to interpolate with.
     244             :                 \param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
     245             :                 Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
     246             :                 \return An interpolated vector.  This vector is not modified. */
     247             :                 vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
     248             :                 {
     249             :                         const f64 inv = 1.0 - d;
     250             :                         return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
     251             :                 }
     252             : 
     253             :                 //! Creates a quadratically interpolated vector between this and two other vectors.
     254             :                 /** \param v2 Second vector to interpolate with.
     255             :                 \param v3 Third vector to interpolate with (maximum at 1.0f)
     256             :                 \param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
     257             :                 Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
     258             :                 \return An interpolated vector. This vector is not modified. */
     259             :                 vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
     260             :                 {
     261             :                         // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
     262             :                         const f64 inv = (T) 1.0 - d;
     263             :                         const f64 mul0 = inv * inv;
     264             :                         const f64 mul1 = (T) 2.0 * d * inv;
     265             :                         const f64 mul2 = d * d;
     266             : 
     267             :                         return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
     268             :                                         (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
     269             :                                         (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
     270             :                 }
     271             : 
     272             :                 //! Sets this vector to the linearly interpolated vector between a and b.
     273             :                 /** \param a first vector to interpolate with, maximum at 1.0f
     274             :                 \param b second vector to interpolate with, maximum at 0.0f
     275             :                 \param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
     276             :                 Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
     277             :                 */
     278             :                 vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
     279             :                 {
     280             :                         X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
     281             :                         Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
     282             :                         Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
     283             :                         return *this;
     284             :                 }
     285             : 
     286             : 
     287             :                 //! Get the rotations that would make a (0,0,1) direction vector point in the same direction as this direction vector.
     288             :                 /** Thanks to Arras on the Irrlicht forums for this method.  This utility method is very useful for
     289             :                 orienting scene nodes towards specific targets.  For example, if this vector represents the difference
     290             :                 between two scene nodes, then applying the result of getHorizontalAngle() to one scene node will point
     291             :                 it at the other one.
     292             :                 Example code:
     293             :                 // Where target and seeker are of type ISceneNode*
     294             :                 const vector3df toTarget(target->getAbsolutePosition() - seeker->getAbsolutePosition());
     295             :                 const vector3df requiredRotation = toTarget.getHorizontalAngle();
     296             :                 seeker->setRotation(requiredRotation);
     297             : 
     298             :                 \return A rotation vector containing the X (pitch) and Y (raw) rotations (in degrees) that when applied to a
     299             :                 +Z (e.g. 0, 0, 1) direction vector would make it point in the same direction as this vector. The Z (roll) rotation
     300             :                 is always 0, since two Euler rotations are sufficient to point in any given direction. */
     301             :                 vector3d<T> getHorizontalAngle() const
     302             :                 {
     303             :                         vector3d<T> angle;
     304             : 
     305             :                         const f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
     306             :                         angle.Y = (T)tmp;
     307             : 
     308             :                         if (angle.Y < 0)
     309             :                                 angle.Y += 360;
     310             :                         if (angle.Y >= 360)
     311             :                                 angle.Y -= 360;
     312             : 
     313             :                         const f64 z1 = core::squareroot(X*X + Z*Z);
     314             : 
     315             :                         angle.X = (T)(atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);
     316             : 
     317             :                         if (angle.X < 0)
     318             :                                 angle.X += 360;
     319             :                         if (angle.X >= 360)
     320             :                                 angle.X -= 360;
     321             : 
     322             :                         return angle;
     323             :                 }
     324             : 
     325             :                 //! Get the spherical coordinate angles
     326             :                 /** This returns Euler degrees for the point represented by
     327             :                 this vector.  The calculation assumes the pole at (0,1,0) and
     328             :                 returns the angles in X and Y.
     329             :                 */
     330             :                 vector3d<T> getSphericalCoordinateAngles() const
     331             :                 {
     332             :                         vector3d<T> angle;
     333             :                         const f64 length = X*X + Y*Y + Z*Z;
     334             : 
     335             :                         if (length)
     336             :                         {
     337             :                                 if (X!=0)
     338             :                                 {
     339             :                                         angle.Y = (T)(atan2((f64)Z,(f64)X) * RADTODEG64);
     340             :                                 }
     341             :                                 else if (Z<0)
     342             :                                         angle.Y=180;
     343             : 
     344             :                                 angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
     345             :                         }
     346             :                         return angle;
     347             :                 }
     348             : 
     349             :                 //! Builds a direction vector from (this) rotation vector.
     350             :                 /** This vector is assumed to be a rotation vector composed of 3 Euler angle rotations, in degrees.
     351             :                 The implementation performs the same calculations as using a matrix to do the rotation.
     352             : 
     353             :                 \param[in] forwards  The direction representing "forwards" which will be rotated by this vector.
     354             :                 If you do not provide a direction, then the +Z axis (0, 0, 1) will be assumed to be forwards.
     355             :                 \return A direction vector calculated by rotating the forwards direction by the 3 Euler angles
     356             :                 (in degrees) represented by this vector. */
     357             :                 vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
     358             :                 {
     359             :                         const f64 cr = cos( core::DEGTORAD64 * X );
     360             :                         const f64 sr = sin( core::DEGTORAD64 * X );
     361             :                         const f64 cp = cos( core::DEGTORAD64 * Y );
     362             :                         const f64 sp = sin( core::DEGTORAD64 * Y );
     363             :                         const f64 cy = cos( core::DEGTORAD64 * Z );
     364             :                         const f64 sy = sin( core::DEGTORAD64 * Z );
     365             : 
     366             :                         const f64 srsp = sr*sp;
     367             :                         const f64 crsp = cr*sp;
     368             : 
     369             :                         const f64 pseudoMatrix[] = {
     370             :                                 ( cp*cy ), ( cp*sy ), ( -sp ),
     371             :                                 ( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
     372             :                                 ( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};
     373             : 
     374             :                         return vector3d<T>(
     375             :                                 (T)(forwards.X * pseudoMatrix[0] +
     376             :                                         forwards.Y * pseudoMatrix[3] +
     377             :                                         forwards.Z * pseudoMatrix[6]),
     378             :                                 (T)(forwards.X * pseudoMatrix[1] +
     379             :                                         forwards.Y * pseudoMatrix[4] +
     380             :                                         forwards.Z * pseudoMatrix[7]),
     381             :                                 (T)(forwards.X * pseudoMatrix[2] +
     382             :                                         forwards.Y * pseudoMatrix[5] +
     383             :                                         forwards.Z * pseudoMatrix[8]));
     384             :                 }
     385             : 
     386             :                 //! Fills an array of 4 values with the vector data (usually floats).
     387             :                 /** Useful for setting in shader constants for example. The fourth value
     388             :                 will always be 0. */
     389             :                 void getAs4Values(T* array) const
     390             :                 {
     391             :                         array[0] = X;
     392             :                         array[1] = Y;
     393             :                         array[2] = Z;
     394             :                         array[3] = 0;
     395             :                 }
     396             : 
     397             :                 //! Fills an array of 3 values with the vector data (usually floats).
     398             :                 /** Useful for setting in shader constants for example.*/
     399             :                 void getAs3Values(T* array) const
     400             :                 {
     401             :                         array[0] = X;
     402             :                         array[1] = Y;
     403             :                         array[2] = Z;
     404             :                 }
     405             : 
     406             : 
     407             :                 //! X coordinate of the vector
     408             :                 T X;
     409             : 
     410             :                 //! Y coordinate of the vector
     411             :                 T Y;
     412             : 
     413             :                 //! Z coordinate of the vector
     414             :                 T Z;
     415             :         };
     416             : 
     417             :         //! partial specialization for integer vectors
     418             :         // Implementor note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
     419             :         template <>
     420             :         inline vector3d<s32> vector3d<s32>::operator /(s32 val) const {return core::vector3d<s32>(X/val,Y/val,Z/val);}
     421             :         template <>
     422             :         inline vector3d<s32>& vector3d<s32>::operator /=(s32 val) {X/=val;Y/=val;Z/=val; return *this;}
     423             : 
     424             :         template <>
     425             :         inline vector3d<s32> vector3d<s32>::getSphericalCoordinateAngles() const
     426             :         {
     427             :                 vector3d<s32> angle;
     428             :                 const f64 length = X*X + Y*Y + Z*Z;
     429             : 
     430             :                 if (length)
     431             :                 {
     432             :                         if (X!=0)
     433             :                         {
     434             :                                 angle.Y = round32((f32)(atan2((f64)Z,(f64)X) * RADTODEG64));
     435             :                         }
     436             :                         else if (Z<0)
     437             :                                 angle.Y=180;
     438             : 
     439             :                         angle.X = round32((f32)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64));
     440             :                 }
     441             :                 return angle;
     442             :         }
     443             : 
     444             :         //! Typedef for a f32 3d vector.
     445             :         typedef vector3d<f32> vector3df;
     446             : 
     447             :         //! Typedef for an integer 3d vector.
     448             :         typedef vector3d<s32> vector3di;
     449             : 
     450             :         //! Function multiplying a scalar and a vector component-wise.
     451             :         template<class S, class T>
     452      832960 :         vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
     453             : 
     454             : } // end namespace core
     455             : } // end namespace irr
     456             : 
     457             : #endif
     458             : 

Generated by: LCOV version 1.11