LCOV - code coverage report
Current view: top level - src - noise.cpp (source / functions) Hit Total Coverage
Test: report Lines: 65 407 16.0 %
Date: 2015-07-11 18:23:49 Functions: 13 37 35.1 %

          Line data    Source code
       1             : /*
       2             :  * Minetest
       3             :  * Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
       4             :  * Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
       5             :  * All rights reserved.
       6             :  *
       7             :  * Redistribution and use in source and binary forms, with or without modification, are
       8             :  * permitted provided that the following conditions are met:
       9             :  *  1. Redistributions of source code must retain the above copyright notice, this list of
      10             :  *     conditions and the following disclaimer.
      11             :  *  2. Redistributions in binary form must reproduce the above copyright notice, this list
      12             :  *     of conditions and the following disclaimer in the documentation and/or other materials
      13             :  *     provided with the distribution.
      14             :  *
      15             :  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
      16             :  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
      17             :  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
      18             :  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      19             :  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
      20             :  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
      21             :  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
      22             :  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
      23             :  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      24             :  */
      25             : 
      26             : #include <math.h>
      27             : #include "noise.h"
      28             : #include <iostream>
      29             : #include <string.h> // memset
      30             : #include "debug.h"
      31             : #include "util/numeric.h"
      32             : #include "util/string.h"
      33             : #include "exceptions.h"
      34             : 
      35             : #define NOISE_MAGIC_X    1619
      36             : #define NOISE_MAGIC_Y    31337
      37             : #define NOISE_MAGIC_Z    52591
      38             : #define NOISE_MAGIC_SEED 1013
      39             : 
      40             : typedef float (*Interp2dFxn)(
      41             :                 float v00, float v10, float v01, float v11,
      42             :                 float x, float y);
      43             : 
      44             : typedef float (*Interp3dFxn)(
      45             :                 float v000, float v100, float v010, float v110,
      46             :                 float v001, float v101, float v011, float v111,
      47             :                 float x, float y, float z);
      48             : 
      49             : float cos_lookup[16] = {
      50             :         1.0,  0.9238,  0.7071,  0.3826, 0, -0.3826, -0.7071, -0.9238,
      51             :         1.0, -0.9238, -0.7071, -0.3826, 0,  0.3826,  0.7071,  0.9238
      52             : };
      53             : 
      54             : FlagDesc flagdesc_noiseparams[] = {
      55             :         {"defaults",    NOISE_FLAG_DEFAULTS},
      56             :         {"eased",       NOISE_FLAG_EASED},
      57             :         {"absvalue",    NOISE_FLAG_ABSVALUE},
      58             :         {"pointbuffer", NOISE_FLAG_POINTBUFFER},
      59             :         {"simplex",     NOISE_FLAG_SIMPLEX},
      60             :         {NULL,          0}
      61             : };
      62             : 
      63             : ///////////////////////////////////////////////////////////////////////////////
      64             : 
      65           1 : PcgRandom::PcgRandom(u64 state, u64 seq)
      66             : {
      67           1 :         seed(state, seq);
      68           1 : }
      69             : 
      70           2 : void PcgRandom::seed(u64 state, u64 seq)
      71             : {
      72           2 :         m_state = 0U;
      73           2 :         m_inc = (seq << 1u) | 1u;
      74           2 :         next();
      75           2 :         m_state += state;
      76           2 :         next();
      77           2 : }
      78             : 
      79             : 
      80       73933 : u32 PcgRandom::next()
      81             : {
      82       73933 :         u64 oldstate = m_state;
      83       73933 :         m_state = oldstate * 6364136223846793005ULL + m_inc;
      84             : 
      85       73933 :         u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
      86       73933 :         u32 rot = oldstate >> 59u;
      87       73933 :         return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
      88             : }
      89             : 
      90             : 
      91       73862 : u32 PcgRandom::range(u32 bound)
      92             : {
      93             :         /*
      94             :         If the bound is not a multiple of the RNG's range, it may cause bias,
      95             :         e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
      96             :         Using rand() % 3, the number 0 would be twice as likely to appear.
      97             :         With a very large RNG range, the effect becomes less prevalent but
      98             :         still present.  This can be solved by modifying the range of the RNG
      99             :         to become a multiple of bound by dropping values above the a threshhold.
     100             :         In our example, threshhold == 4 - 3 = 1 % 3 == 1, so reject 0, thus
     101             :         making the range 3 with no bias.
     102             : 
     103             :         This loop looks dangerous, but will always terminate due to the
     104             :         RNG's property of uniformity.
     105             :         */
     106       73862 :         u32 threshhold = -bound % bound;
     107             :         u32 r;
     108             : 
     109       73862 :         while ((r = next()) < threshhold)
     110             :                 ;
     111             : 
     112       73862 :         return r % bound;
     113             : }
     114             : 
     115             : 
     116       73862 : s32 PcgRandom::range(s32 min, s32 max)
     117             : {
     118       73862 :         if (max < min)
     119           0 :                 throw PrngException("Invalid range (max < min)");
     120             : 
     121       73862 :         u32 bound = max - min + 1;
     122       73862 :         return range(bound) + min;
     123             : }
     124             : 
     125             : 
     126           0 : void PcgRandom::bytes(void *out, size_t len)
     127             : {
     128           0 :         u8 *outb = (u8 *)out;
     129           0 :         int bytes_left = 0;
     130             :         u32 r;
     131             : 
     132           0 :         while (len--) {
     133           0 :                 if (bytes_left == 0) {
     134           0 :                         bytes_left = sizeof(u32);
     135           0 :                         r = next();
     136             :                 }
     137             : 
     138           0 :                 *outb = r & 0xFF;
     139           0 :                 outb++;
     140           0 :                 bytes_left--;
     141           0 :                 r >>= 8;
     142             :         }
     143           0 : }
     144             : 
     145             : 
     146           0 : s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
     147             : {
     148           0 :         s32 accum = 0;
     149           0 :         for (int i = 0; i != num_trials; i++)
     150           0 :                 accum += range(min, max);
     151           0 :         return myround((float)accum / num_trials);
     152             : }
     153             : 
     154             : ///////////////////////////////////////////////////////////////////////////////
     155             : 
     156     9199872 : float noise2d(int x, int y, int seed)
     157             : {
     158     9199872 :         int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
     159     9199872 :                         + NOISE_MAGIC_SEED * seed) & 0x7fffffff;
     160     9199872 :         n = (n >> 13) ^ n;
     161     9199872 :         n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
     162     9199872 :         return 1.f - (float)n / 0x40000000;
     163             : }
     164             : 
     165             : 
     166        1463 : float noise3d(int x, int y, int z, int seed)
     167             : {
     168        1463 :         int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
     169        1463 :                         + NOISE_MAGIC_SEED * seed) & 0x7fffffff;
     170        1463 :         n = (n >> 13) ^ n;
     171        1463 :         n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
     172        1463 :         return 1.f - (float)n / 0x40000000;
     173             : }
     174             : 
     175             : 
     176             : inline float dotProduct(float vx, float vy, float wx, float wy)
     177             : {
     178             :         return vx * wx + vy * wy;
     179             : }
     180             : 
     181             : 
     182     6899904 : inline float linearInterpolation(float v0, float v1, float t)
     183             : {
     184     6899904 :         return v0 + (v1 - v0) * t;
     185             : }
     186             : 
     187             : 
     188     2299968 : inline float biLinearInterpolation(
     189             :         float v00, float v10,
     190             :         float v01, float v11,
     191             :         float x, float y)
     192             : {
     193     2299968 :         float tx = easeCurve(x);
     194     2299968 :         float ty = easeCurve(y);
     195             : #if 0
     196             :         return (
     197             :                 v00 * (1 - tx) * (1 - ty) +
     198             :                 v10 *      tx  * (1 - ty) +
     199             :                 v01 * (1 - tx) *      ty  +
     200             :                 v11 *      tx  *      ty
     201             :         );
     202             : #endif
     203     2299968 :         float u = linearInterpolation(v00, v10, tx);
     204     2299968 :         float v = linearInterpolation(v01, v11, tx);
     205     2299968 :         return linearInterpolation(u, v, ty);
     206             : }
     207             : 
     208             : 
     209           0 : inline float biLinearInterpolationNoEase(
     210             :         float v00, float v10,
     211             :         float v01, float v11,
     212             :         float x, float y)
     213             : {
     214           0 :         float u = linearInterpolation(v00, v10, x);
     215           0 :         float v = linearInterpolation(v01, v11, x);
     216           0 :         return linearInterpolation(u, v, y);
     217             : }
     218             : 
     219             : 
     220           0 : float triLinearInterpolation(
     221             :         float v000, float v100, float v010, float v110,
     222             :         float v001, float v101, float v011, float v111,
     223             :         float x, float y, float z)
     224             : {
     225           0 :         float tx = easeCurve(x);
     226           0 :         float ty = easeCurve(y);
     227           0 :         float tz = easeCurve(z);
     228             : #if 0
     229             :         return (
     230             :                 v000 * (1 - tx) * (1 - ty) * (1 - tz) +
     231             :                 v100 *      tx  * (1 - ty) * (1 - tz) +
     232             :                 v010 * (1 - tx) *      ty  * (1 - tz) +
     233             :                 v110 *      tx  *      ty  * (1 - tz) +
     234             :                 v001 * (1 - tx) * (1 - ty) *      tz  +
     235             :                 v101 *      tx  * (1 - ty) *      tz  +
     236             :                 v011 * (1 - tx) *      ty  *      tz  +
     237             :                 v111 *      tx  *      ty  *      tz
     238             :         );
     239             : #endif
     240           0 :         float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
     241           0 :         float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
     242           0 :         return linearInterpolation(u, v, tz);
     243             : }
     244             : 
     245           0 : float triLinearInterpolationNoEase(
     246             :         float v000, float v100, float v010, float v110,
     247             :         float v001, float v101, float v011, float v111,
     248             :         float x, float y, float z)
     249             : {
     250           0 :         float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
     251           0 :         float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
     252           0 :         return linearInterpolation(u, v, z);
     253             : }
     254             : 
     255             : 
     256             : #if 0
     257             : float noise2d_gradient(float x, float y, int seed)
     258             : {
     259             :         // Calculate the integer coordinates
     260             :         int x0 = (x > 0.0 ? (int)x : (int)x - 1);
     261             :         int y0 = (y > 0.0 ? (int)y : (int)y - 1);
     262             :         // Calculate the remaining part of the coordinates
     263             :         float xl = x - (float)x0;
     264             :         float yl = y - (float)y0;
     265             :         // Calculate random cosine lookup table indices for the integer corners.
     266             :         // They are looked up as unit vector gradients from the lookup table.
     267             :         int n00 = (int)((noise2d(x0, y0, seed)+1)*8);
     268             :         int n10 = (int)((noise2d(x0+1, y0, seed)+1)*8);
     269             :         int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8);
     270             :         int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8);
     271             :         // Make a dot product for the gradients and the positions, to get the values
     272             :         float s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl);
     273             :         float u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl);
     274             :         float v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl);
     275             :         float w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl);
     276             :         // Interpolate between the values
     277             :         return biLinearInterpolation(s,u,v,w,xl,yl);
     278             : }
     279             : #endif
     280             : 
     281             : 
     282     2299968 : float noise2d_gradient(float x, float y, int seed, bool eased)
     283             : {
     284             :         // Calculate the integer coordinates
     285     2299968 :         int x0 = myfloor(x);
     286     2299968 :         int y0 = myfloor(y);
     287             :         // Calculate the remaining part of the coordinates
     288     2299968 :         float xl = x - (float)x0;
     289     2299968 :         float yl = y - (float)y0;
     290             :         // Get values for corners of square
     291     2299968 :         float v00 = noise2d(x0, y0, seed);
     292     2299968 :         float v10 = noise2d(x0+1, y0, seed);
     293     2299968 :         float v01 = noise2d(x0, y0+1, seed);
     294     2299968 :         float v11 = noise2d(x0+1, y0+1, seed);
     295             :         // Interpolate
     296     2299968 :         if (eased)
     297     2299968 :                 return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
     298             :         else
     299           0 :                 return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
     300             : }
     301             : 
     302             : 
     303           0 : float noise3d_gradient(float x, float y, float z, int seed, bool eased)
     304             : {
     305             :         // Calculate the integer coordinates
     306           0 :         int x0 = myfloor(x);
     307           0 :         int y0 = myfloor(y);
     308           0 :         int z0 = myfloor(z);
     309             :         // Calculate the remaining part of the coordinates
     310           0 :         float xl = x - (float)x0;
     311           0 :         float yl = y - (float)y0;
     312           0 :         float zl = z - (float)z0;
     313             :         // Get values for corners of cube
     314           0 :         float v000 = noise3d(x0,     y0,     z0,     seed);
     315           0 :         float v100 = noise3d(x0 + 1, y0,     z0,     seed);
     316           0 :         float v010 = noise3d(x0,     y0 + 1, z0,     seed);
     317           0 :         float v110 = noise3d(x0 + 1, y0 + 1, z0,     seed);
     318           0 :         float v001 = noise3d(x0,     y0,     z0 + 1, seed);
     319           0 :         float v101 = noise3d(x0 + 1, y0,     z0 + 1, seed);
     320           0 :         float v011 = noise3d(x0,     y0 + 1, z0 + 1, seed);
     321           0 :         float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
     322             :         // Interpolate
     323           0 :         if (eased) {
     324             :                 return triLinearInterpolation(
     325             :                         v000, v100, v010, v110,
     326             :                         v001, v101, v011, v111,
     327           0 :                         xl, yl, zl);
     328             :         } else {
     329             :                 return triLinearInterpolationNoEase(
     330             :                         v000, v100, v010, v110,
     331             :                         v001, v101, v011, v111,
     332           0 :                         xl, yl, zl);
     333             :         }
     334             : }
     335             : 
     336             : 
     337      766656 : float noise2d_perlin(float x, float y, int seed,
     338             :         int octaves, float persistence, bool eased)
     339             : {
     340      766656 :         float a = 0;
     341      766656 :         float f = 1.0;
     342      766656 :         float g = 1.0;
     343     3066624 :         for (int i = 0; i < octaves; i++)
     344             :         {
     345     2299968 :                 a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
     346     2299968 :                 f *= 2.0;
     347     2299968 :                 g *= persistence;
     348             :         }
     349      766656 :         return a;
     350             : }
     351             : 
     352             : 
     353           0 : float noise2d_perlin_abs(float x, float y, int seed,
     354             :         int octaves, float persistence, bool eased)
     355             : {
     356           0 :         float a = 0;
     357           0 :         float f = 1.0;
     358           0 :         float g = 1.0;
     359           0 :         for (int i = 0; i < octaves; i++) {
     360           0 :                 a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
     361           0 :                 f *= 2.0;
     362           0 :                 g *= persistence;
     363             :         }
     364           0 :         return a;
     365             : }
     366             : 
     367             : 
     368           0 : float noise3d_perlin(float x, float y, float z, int seed,
     369             :         int octaves, float persistence, bool eased)
     370             : {
     371           0 :         float a = 0;
     372           0 :         float f = 1.0;
     373           0 :         float g = 1.0;
     374           0 :         for (int i = 0; i < octaves; i++) {
     375           0 :                 a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
     376           0 :                 f *= 2.0;
     377           0 :                 g *= persistence;
     378             :         }
     379           0 :         return a;
     380             : }
     381             : 
     382             : 
     383           0 : float noise3d_perlin_abs(float x, float y, float z, int seed,
     384             :         int octaves, float persistence, bool eased)
     385             : {
     386           0 :         float a = 0;
     387           0 :         float f = 1.0;
     388           0 :         float g = 1.0;
     389           0 :         for (int i = 0; i < octaves; i++) {
     390           0 :                 a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
     391           0 :                 f *= 2.0;
     392           0 :                 g *= persistence;
     393             :         }
     394           0 :         return a;
     395             : }
     396             : 
     397             : 
     398           0 : float contour(float v)
     399             : {
     400           0 :         v = fabs(v);
     401           0 :         if (v >= 1.0)
     402           0 :                 return 0.0;
     403           0 :         return (1.0 - v);
     404             : }
     405             : 
     406             : 
     407             : ///////////////////////// [ New noise ] ////////////////////////////
     408             : 
     409             : 
     410           0 : float NoisePerlin2D(NoiseParams *np, float x, float y, int seed)
     411             : {
     412           0 :         float a = 0;
     413           0 :         float f = 1.0;
     414           0 :         float g = 1.0;
     415             : 
     416           0 :         x /= np->spread.X;
     417           0 :         y /= np->spread.Y;
     418           0 :         seed += np->seed;
     419             : 
     420           0 :         for (size_t i = 0; i < np->octaves; i++) {
     421           0 :                 float noiseval = noise2d_gradient(x * f, y * f, seed + i,
     422           0 :                         np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));
     423             : 
     424           0 :                 if (np->flags & NOISE_FLAG_ABSVALUE)
     425           0 :                         noiseval = fabs(noiseval);
     426             : 
     427           0 :                 a += g * noiseval;
     428           0 :                 f *= np->lacunarity;
     429           0 :                 g *= np->persist;
     430             :         }
     431             : 
     432           0 :         return np->offset + a * np->scale;
     433             : }
     434             : 
     435             : 
     436           0 : float NoisePerlin3D(NoiseParams *np, float x, float y, float z, int seed)
     437             : {
     438           0 :         float a = 0;
     439           0 :         float f = 1.0;
     440           0 :         float g = 1.0;
     441             : 
     442           0 :         x /= np->spread.X;
     443           0 :         y /= np->spread.Y;
     444           0 :         z /= np->spread.Z;
     445           0 :         seed += np->seed;
     446             : 
     447           0 :         for (size_t i = 0; i < np->octaves; i++) {
     448           0 :                 float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
     449           0 :                         np->flags & NOISE_FLAG_EASED);
     450             : 
     451           0 :                 if (np->flags & NOISE_FLAG_ABSVALUE)
     452           0 :                         noiseval = fabs(noiseval);
     453             : 
     454           0 :                 a += g * noiseval;
     455           0 :                 f *= np->lacunarity;
     456           0 :                 g *= np->persist;
     457             :         }
     458             : 
     459           0 :         return np->offset + a * np->scale;
     460             : }
     461             : 
     462             : 
     463           0 : Noise::Noise(NoiseParams *np_, int seed, u32 sx, u32 sy, u32 sz)
     464             : {
     465           0 :         memcpy(&np, np_, sizeof(np));
     466           0 :         this->seed = seed;
     467           0 :         this->sx   = sx;
     468           0 :         this->sy   = sy;
     469           0 :         this->sz   = sz;
     470             : 
     471           0 :         this->persist_buf  = NULL;
     472           0 :         this->gradient_buf = NULL;
     473           0 :         this->result       = NULL;
     474             : 
     475           0 :         allocBuffers();
     476           0 : }
     477             : 
     478             : 
     479           0 : Noise::~Noise()
     480             : {
     481           0 :         delete[] gradient_buf;
     482           0 :         delete[] persist_buf;
     483           0 :         delete[] noise_buf;
     484           0 :         delete[] result;
     485           0 : }
     486             : 
     487             : 
     488           0 : void Noise::allocBuffers()
     489             : {
     490           0 :         if (sx < 1)
     491           0 :                 sx = 1;
     492           0 :         if (sy < 1)
     493           0 :                 sy = 1;
     494           0 :         if (sz < 1)
     495           0 :                 sz = 1;
     496             : 
     497           0 :         this->noise_buf = NULL;
     498           0 :         resizeNoiseBuf(sz > 1);
     499             : 
     500           0 :         delete[] gradient_buf;
     501           0 :         delete[] persist_buf;
     502           0 :         delete[] result;
     503             : 
     504             :         try {
     505           0 :                 size_t bufsize = sx * sy * sz;
     506           0 :                 this->persist_buf  = NULL;
     507           0 :                 this->gradient_buf = new float[bufsize];
     508           0 :                 this->result       = new float[bufsize];
     509           0 :         } catch (std::bad_alloc &e) {
     510           0 :                 throw InvalidNoiseParamsException();
     511             :         }
     512           0 : }
     513             : 
     514             : 
     515           0 : void Noise::setSize(u32 sx, u32 sy, u32 sz)
     516             : {
     517           0 :         this->sx = sx;
     518           0 :         this->sy = sy;
     519           0 :         this->sz = sz;
     520             : 
     521           0 :         allocBuffers();
     522           0 : }
     523             : 
     524             : 
     525           0 : void Noise::setSpreadFactor(v3f spread)
     526             : {
     527           0 :         this->np.spread = spread;
     528             : 
     529           0 :         resizeNoiseBuf(sz > 1);
     530           0 : }
     531             : 
     532             : 
     533           0 : void Noise::setOctaves(int octaves)
     534             : {
     535           0 :         this->np.octaves = octaves;
     536             : 
     537           0 :         resizeNoiseBuf(sz > 1);
     538           0 : }
     539             : 
     540             : 
     541           0 : void Noise::resizeNoiseBuf(bool is3d)
     542             : {
     543             :         //maximum possible spread value factor
     544           0 :         float ofactor = (np.lacunarity > 1.0) ?
     545           0 :                 pow(np.lacunarity, np.octaves - 1) :
     546           0 :                 np.lacunarity;
     547             : 
     548             :         // noise lattice point count
     549             :         // (int)(sz * spread * ofactor) is # of lattice points crossed due to length
     550           0 :         float num_noise_points_x = sx * ofactor / np.spread.X;
     551           0 :         float num_noise_points_y = sy * ofactor / np.spread.Y;
     552           0 :         float num_noise_points_z = sz * ofactor / np.spread.Z;
     553             : 
     554             :         // protect against obviously invalid parameters
     555           0 :         if (num_noise_points_x > 1000000000.f ||
     556           0 :                 num_noise_points_y > 1000000000.f ||
     557             :                 num_noise_points_z > 1000000000.f)
     558           0 :                 throw InvalidNoiseParamsException();
     559             : 
     560             :         // + 2 for the two initial endpoints
     561             :         // + 1 for potentially crossing a boundary due to offset
     562           0 :         size_t nlx = (size_t)ceil(num_noise_points_x) + 3;
     563           0 :         size_t nly = (size_t)ceil(num_noise_points_y) + 3;
     564           0 :         size_t nlz = is3d ? (size_t)ceil(num_noise_points_z) + 3 : 1;
     565             : 
     566           0 :         delete[] noise_buf;
     567             :         try {
     568           0 :                 noise_buf = new float[nlx * nly * nlz];
     569           0 :         } catch (std::bad_alloc &e) {
     570           0 :                 throw InvalidNoiseParamsException();
     571             :         }
     572           0 : }
     573             : 
     574             : 
     575             : /*
     576             :  * NB:  This algorithm is not optimal in terms of space complexity.  The entire
     577             :  * integer lattice of noise points could be done as 2 lines instead, and for 3D,
     578             :  * 2 lines + 2 planes.
     579             :  * However, this would require the noise calls to be interposed with the
     580             :  * interpolation loops, which may trash the icache, leading to lower overall
     581             :  * performance.
     582             :  * Another optimization that could save half as many noise calls is to carry over
     583             :  * values from the previous noise lattice as midpoints in the new lattice for the
     584             :  * next octave.
     585             :  */
     586             : #define idx(x, y) ((y) * nlx + (x))
     587           0 : void Noise::gradientMap2D(
     588             :                 float x, float y,
     589             :                 float step_x, float step_y,
     590             :                 int seed)
     591             : {
     592             :         float v00, v01, v10, v11, u, v, orig_u;
     593             :         u32 index, i, j, noisex, noisey;
     594             :         u32 nlx, nly;
     595             :         s32 x0, y0;
     596             : 
     597           0 :         bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
     598             :         Interp2dFxn interpolate = eased ?
     599           0 :                 biLinearInterpolation : biLinearInterpolationNoEase;
     600             : 
     601           0 :         x0 = floor(x);
     602           0 :         y0 = floor(y);
     603           0 :         u = x - (float)x0;
     604           0 :         v = y - (float)y0;
     605           0 :         orig_u = u;
     606             : 
     607             :         //calculate noise point lattice
     608           0 :         nlx = (u32)(u + sx * step_x) + 2;
     609           0 :         nly = (u32)(v + sy * step_y) + 2;
     610           0 :         index = 0;
     611           0 :         for (j = 0; j != nly; j++)
     612           0 :                 for (i = 0; i != nlx; i++)
     613           0 :                         noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);
     614             : 
     615             :         //calculate interpolations
     616           0 :         index  = 0;
     617           0 :         noisey = 0;
     618           0 :         for (j = 0; j != sy; j++) {
     619           0 :                 v00 = noise_buf[idx(0, noisey)];
     620           0 :                 v10 = noise_buf[idx(1, noisey)];
     621           0 :                 v01 = noise_buf[idx(0, noisey + 1)];
     622           0 :                 v11 = noise_buf[idx(1, noisey + 1)];
     623             : 
     624           0 :                 u = orig_u;
     625           0 :                 noisex = 0;
     626           0 :                 for (i = 0; i != sx; i++) {
     627           0 :                         gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);
     628             : 
     629           0 :                         u += step_x;
     630           0 :                         if (u >= 1.0) {
     631           0 :                                 u -= 1.0;
     632           0 :                                 noisex++;
     633           0 :                                 v00 = v10;
     634           0 :                                 v01 = v11;
     635           0 :                                 v10 = noise_buf[idx(noisex + 1, noisey)];
     636           0 :                                 v11 = noise_buf[idx(noisex + 1, noisey + 1)];
     637             :                         }
     638             :                 }
     639             : 
     640           0 :                 v += step_y;
     641           0 :                 if (v >= 1.0) {
     642           0 :                         v -= 1.0;
     643           0 :                         noisey++;
     644             :                 }
     645             :         }
     646           0 : }
     647             : #undef idx
     648             : 
     649             : 
     650             : #define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
     651           0 : void Noise::gradientMap3D(
     652             :                 float x, float y, float z,
     653             :                 float step_x, float step_y, float step_z,
     654             :                 int seed)
     655             : {
     656             :         float v000, v010, v100, v110;
     657             :         float v001, v011, v101, v111;
     658             :         float u, v, w, orig_u, orig_v;
     659             :         u32 index, i, j, k, noisex, noisey, noisez;
     660             :         u32 nlx, nly, nlz;
     661             :         s32 x0, y0, z0;
     662             : 
     663           0 :         Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
     664           0 :                 triLinearInterpolation : triLinearInterpolationNoEase;
     665             : 
     666           0 :         x0 = floor(x);
     667           0 :         y0 = floor(y);
     668           0 :         z0 = floor(z);
     669           0 :         u = x - (float)x0;
     670           0 :         v = y - (float)y0;
     671           0 :         w = z - (float)z0;
     672           0 :         orig_u = u;
     673           0 :         orig_v = v;
     674             : 
     675             :         //calculate noise point lattice
     676           0 :         nlx = (u32)(u + sx * step_x) + 2;
     677           0 :         nly = (u32)(v + sy * step_y) + 2;
     678           0 :         nlz = (u32)(w + sz * step_z) + 2;
     679           0 :         index = 0;
     680           0 :         for (k = 0; k != nlz; k++)
     681           0 :                 for (j = 0; j != nly; j++)
     682           0 :                         for (i = 0; i != nlx; i++)
     683           0 :                                 noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
     684             : 
     685             :         //calculate interpolations
     686           0 :         index  = 0;
     687           0 :         noisey = 0;
     688           0 :         noisez = 0;
     689           0 :         for (k = 0; k != sz; k++) {
     690           0 :                 v = orig_v;
     691           0 :                 noisey = 0;
     692           0 :                 for (j = 0; j != sy; j++) {
     693           0 :                         v000 = noise_buf[idx(0, noisey,     noisez)];
     694           0 :                         v100 = noise_buf[idx(1, noisey,     noisez)];
     695           0 :                         v010 = noise_buf[idx(0, noisey + 1, noisez)];
     696           0 :                         v110 = noise_buf[idx(1, noisey + 1, noisez)];
     697           0 :                         v001 = noise_buf[idx(0, noisey,     noisez + 1)];
     698           0 :                         v101 = noise_buf[idx(1, noisey,     noisez + 1)];
     699           0 :                         v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
     700           0 :                         v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];
     701             : 
     702           0 :                         u = orig_u;
     703           0 :                         noisex = 0;
     704           0 :                         for (i = 0; i != sx; i++) {
     705           0 :                                 gradient_buf[index++] = interpolate(
     706             :                                         v000, v100, v010, v110,
     707             :                                         v001, v101, v011, v111,
     708           0 :                                         u, v, w);
     709             : 
     710           0 :                                 u += step_x;
     711           0 :                                 if (u >= 1.0) {
     712           0 :                                         u -= 1.0;
     713           0 :                                         noisex++;
     714           0 :                                         v000 = v100;
     715           0 :                                         v010 = v110;
     716           0 :                                         v100 = noise_buf[idx(noisex + 1, noisey,     noisez)];
     717           0 :                                         v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
     718           0 :                                         v001 = v101;
     719           0 :                                         v011 = v111;
     720           0 :                                         v101 = noise_buf[idx(noisex + 1, noisey,     noisez + 1)];
     721           0 :                                         v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
     722             :                                 }
     723             :                         }
     724             : 
     725           0 :                         v += step_y;
     726           0 :                         if (v >= 1.0) {
     727           0 :                                 v -= 1.0;
     728           0 :                                 noisey++;
     729             :                         }
     730             :                 }
     731             : 
     732           0 :                 w += step_z;
     733           0 :                 if (w >= 1.0) {
     734           0 :                         w -= 1.0;
     735           0 :                         noisez++;
     736             :                 }
     737             :         }
     738           0 : }
     739             : #undef idx
     740             : 
     741             : 
     742           0 : float *Noise::perlinMap2D(float x, float y, float *persistence_map)
     743             : {
     744           0 :         float f = 1.0, g = 1.0;
     745           0 :         size_t bufsize = sx * sy;
     746             : 
     747           0 :         x /= np.spread.X;
     748           0 :         y /= np.spread.Y;
     749             : 
     750           0 :         memset(result, 0, sizeof(float) * bufsize);
     751             : 
     752           0 :         if (persistence_map) {
     753           0 :                 if (!persist_buf)
     754           0 :                         persist_buf = new float[bufsize];
     755           0 :                 for (size_t i = 0; i != bufsize; i++)
     756           0 :                         persist_buf[i] = 1.0;
     757             :         }
     758             : 
     759           0 :         for (size_t oct = 0; oct < np.octaves; oct++) {
     760           0 :                 gradientMap2D(x * f, y * f,
     761           0 :                         f / np.spread.X, f / np.spread.Y,
     762           0 :                         seed + np.seed + oct);
     763             : 
     764           0 :                 updateResults(g, persist_buf, persistence_map, bufsize);
     765             : 
     766           0 :                 f *= np.lacunarity;
     767           0 :                 g *= np.persist;
     768             :         }
     769             : 
     770           0 :         if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
     771           0 :                 for (size_t i = 0; i != bufsize; i++)
     772           0 :                         result[i] = result[i] * np.scale + np.offset;
     773             :         }
     774             : 
     775           0 :         return result;
     776             : }
     777             : 
     778             : 
     779           0 : float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
     780             : {
     781           0 :         float f = 1.0, g = 1.0;
     782           0 :         size_t bufsize = sx * sy * sz;
     783             : 
     784           0 :         x /= np.spread.X;
     785           0 :         y /= np.spread.Y;
     786           0 :         z /= np.spread.Z;
     787             : 
     788           0 :         memset(result, 0, sizeof(float) * bufsize);
     789             : 
     790           0 :         if (persistence_map) {
     791           0 :                 if (!persist_buf)
     792           0 :                         persist_buf = new float[bufsize];
     793           0 :                 for (size_t i = 0; i != bufsize; i++)
     794           0 :                         persist_buf[i] = 1.0;
     795             :         }
     796             : 
     797           0 :         for (size_t oct = 0; oct < np.octaves; oct++) {
     798           0 :                 gradientMap3D(x * f, y * f, z * f,
     799           0 :                         f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
     800           0 :                         seed + np.seed + oct);
     801             : 
     802           0 :                 updateResults(g, persist_buf, persistence_map, bufsize);
     803             : 
     804           0 :                 f *= np.lacunarity;
     805           0 :                 g *= np.persist;
     806             :         }
     807             : 
     808           0 :         if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
     809           0 :                 for (size_t i = 0; i != bufsize; i++)
     810           0 :                         result[i] = result[i] * np.scale + np.offset;
     811             :         }
     812             : 
     813           0 :         return result;
     814             : }
     815             : 
     816             : 
     817           0 : void Noise::updateResults(float g, float *gmap,
     818             :         float *persistence_map, size_t bufsize)
     819             : {
     820             :         // This looks very ugly, but it is 50-70% faster than having
     821             :         // conditional statements inside the loop
     822           0 :         if (np.flags & NOISE_FLAG_ABSVALUE) {
     823           0 :                 if (persistence_map) {
     824           0 :                         for (size_t i = 0; i != bufsize; i++) {
     825           0 :                                 result[i] += gmap[i] * fabs(gradient_buf[i]);
     826           0 :                                 gmap[i] *= persistence_map[i];
     827             :                         }
     828             :                 } else {
     829           0 :                         for (size_t i = 0; i != bufsize; i++)
     830           0 :                                 result[i] += g * fabs(gradient_buf[i]);
     831             :                 }
     832             :         } else {
     833           0 :                 if (persistence_map) {
     834           0 :                         for (size_t i = 0; i != bufsize; i++) {
     835           0 :                                 result[i] += gmap[i] * gradient_buf[i];
     836           0 :                                 gmap[i] *= persistence_map[i];
     837             :                         }
     838             :                 } else {
     839           0 :                         for (size_t i = 0; i != bufsize; i++)
     840           0 :                                 result[i] += g * gradient_buf[i];
     841             :                 }
     842             :         }
     843           3 : }

Generated by: LCOV version 1.11